
Learning Pushing Dynamics for Arbitrary 2D Rigid
Bodies

April 28, 2025

Art Boyarov
Robotics Department
University of Michigan

Ann Arbor, MI
aboyarov@umich.edu

Zichen Zhang
EECS Department

University of Michigan
Ann Arbor, MI

zhangzzc@umich.edu

I. INTRODUCTION

Robotic manipulation of objects with arbitrary and complex
shapes is a fundamental challenge in robotics, with broad
applications in automation, manufacturing, logistics, and ser-
vice robotics [1]. Many real-world tasks such as warehouse
sorting, assembly line automation, and household assistance
require robots to interact with objects whose shapes, sizes, and
physical properties are not known a priori. In these settings,
the ability to predict how an object will move in response to
a given action is crucial for planning and control.

Traditional approaches to modeling object dynamics often
rely on analytical models or require extensive prior knowledge
of the object’s geometry and physical parameters. However,
these methods struggle to generalize to novel objects or to
handle the diversity of shapes encountered in unstructured
environments. Recent advances in data-driven methods, partic-
ularly those leveraging deep learning, have shown promise in
learning complex dynamics directly from data, enabling robots
to manipulate a wider variety of objects with minimal prior
assumptions [2].

A particularly challenging instance of this problem is the
task of planar pushing, where a robot must predict the motion
of a 2D rigid body as it is pushed at different points and angles
along its perimeter. The dynamics of planar pushing are highly
sensitive to the geometry of the object, the contact location,
and the direction of the applied force. Accurately modeling
these dynamics for arbitrary shapes is essential for robust and
flexible manipulation.

In this work, we address the problem of learning the
dynamics of arbitrary 2D rigid bodies under pushing actions.
We first introduce a parametrization of the action space that
captures the push location, direction, and distance, enabling a
standardized way to represent pushing actions at a wide range
of points on the object’s perimeter. We then develop two neural
network architectures for learning the dynamics: a baseline
shallow multi-layer perceptron (MLP) and a deeper, more
advanced network that takes in the shape’s point cloud and
incorporates techniques like batch normalization and dropout

for improved stability.
Both models are trained using simulation data collected

with a Franka Panda robotic arm in PyBullet, pushing three
complex shapes: an L shape, a U shape, and a Block M
shape. We demonstrate that the deeper network achieves lower
and more stable validation losses compared to the baseline,
indicating its improved capacity to model complex dynamics.

Finally, we integrate the learned models into a Model
Predictive Path Integral (MPPI) controller for closed-loop
control and evaluate the system on the object pushing tasks
for all shapes.

Our experiments show that the learned dynamics models
enable the successful execution of pushing tasks across all
shapes, validating the generalizability and practical effective-
ness of our approach.

II. IMPLEMENTATION

A. Parametrization of action space
In our pushing of rigid bodies of arbitrary geometries, we

parametrize the pushing action space as u = [p ϕ l]. p ∈ Z
is the point on the shape’s perimeter where we push the shape,
ϕ is the angle at which we push the shape relative to the edge
at which we push, and l is the length that we push the shape by.
To execute a pushing action specified by u∗ = [p∗ ϕ∗ l∗]
we first find the location of the point in the part’s body frame
using a look-up table with points on the shape’s perimeter
defined ahead of time. Let the point p∗’s location on the part
surface in the local frame be [p∗x p∗y]. The following formula
is used to calculate the 2D start and end pushing locations
xstart and xend:

xstart = RW
B

[
p∗x p∗y

]
+ [Bx By] (1)

ψ = atan2(ny, nx)

ϕ∗B = ϕ∗ + ψ

xend = RW
B

[
p∗x − l∗ cos(ϕ∗B) p∗y − l∗ sin(ϕ∗B)

]
+ [Bx By]

(2)

1

Where [Bx By] is the object’s 2D position in the world
frame, RW

B is the rotation matrix from the object’s local frame
to the world frame, and [nx ny] is the normal to the object’s
surface at the pushing point. After calculating xstart and xend,
the robot arm’s end effector is lowered to a height of 0.02m
and moved from xstart to xend while pushing the object.

B. Baseline Pushing Network

To learn a dynamics function xt+1 = f(xt, ut) that de-
scribes the motion of a rigid body under pushing action u, we
implemented two neural networks that took in different data
about the object and the pushing action.

The first neural network took in the block’s current state
xt and applied action u = [p ϕ l] encoded as I =
[xt l ϕ bnp×1 pWx pWy]. bnp×1 is a one-hot encoding
of the points: bi = 0 for i ̸= p, and bp = 1. pWx and pWy are
the x and y positions of the point p in the world frame.

This neural network has three layers with 200 neurons in
both hidden layers. The first activation function is a ReLU due
to the binary nature of the input data, and the second activation
function is a tanh function to capture nonlinear relationships
[3].

The baseline model is a relatively shallow multi-layer
perceptron (MLP) with two hidden layers. It is designed to
capture the basic relationships between the input features and
the resulting object motion, and may be sufficient for simple or
well-structured shapes. However, its limited depth and capacity
may restrict its ability to model the more intricate dynamics
in the training data we collect.

C. Advanced Point-Cloud Based Network

While both our baseline and deep network approaches
use the same input representation—comprising the object’s
current state, action parameters, a one-hot encoding of the
push point, and the coordinates of the selected push point, the
key difference lies in the complexity and design of the neural
network architecture itself [4].

In contrast to the simple MLP in the baseline, our improved
approach employs a significantly deeper neural network archi-
tecture, drawing inspiration from networks developed for point
cloud processing, such as PointNet [5], which is developed for
3D object classification and segmentation in computer vision.
Although our input is not a true point cloud, we hypothesize
that the more complex, hierarchical structure of these networks
can better capture subtle interactions between the object’s
geometry and the applied action.

Specifically, the point cloud-inspired network features three
hidden layers with 256, 128, and 64 neurons, respectively, and
incorporates batch normalization and dropout (with a rate of
0.1) after each layer to improve generalization and training
stability. The point cloud-inspired network has over twice as
many trainable parameters and a more sophisticated structure,
enabling it to capture more complex relationships in the data.

The motivation for this architectural choice is twofold. First,
deeper networks have been shown to learn richer internal
representations [6], which can be critical for tasks involving

complex spatial reasoning [7]. Second, by adopting techniques
from point cloud networks, we aim to future-proof our ap-
proach for scenarios where richer geometric input may become
available. Even with the current input, our experiments test
whether increased model capacity alone can yield improved
predictive performance.

III. RESULTS

A. Collecting Training Data

We developed a simulation using the PyBullet libraries
where a Franka Panda robotic arm pushed a block according to
randomly sampled actions described using the aforementioned
parametrization [8]. For each shape, we collected 200 trajec-
tories with 10 steps in them. Each trajectory was an ordered
list of tuples [xt ut xt+1 pt pt+1]. xt and xt+1 are the
current and next states respectively, ut is the pushing action,
and pt and pt+1 are the point clouds of the objects during
states xt and xt+1 respectively. The data collection took up to
20 minutes per shape.

B. Training the Baseline Neural Network

Fig. 1. Training and Validation losses for the U-shape baseline dynamics
neural network.

Fig. 2. Training and Validation losses for the L-shape baseline dynamics
neural network.

2

Fig. 3. Training and Validation losses for the Block M shape baseline
dynamics neural network.

This neural network was trained using the Adam optimizer
with dynamic lowering of the learning rate. Loss curves for
each shape are given in Figures 1, 2, and 3.

C. Training the Deeper Point Cloud-Inspired Neural Network

Fig. 4. Training and Validation losses for the U-shape point cloud dynamics
neural network.

Fig. 5. Training and Validation losses for the L-shape point cloud dynamics
neural network.

Fig. 6. Training and Validation losses for the Block M shape point cloud
dynamics neural network.

For the point cloud-inspired network which has deeper ar-
chitecture and more parameters, we employ the same training
hyperparameters to ensure equal comparison with the baseline
network training. However, the advanced network is trained
for 200 epochs due to the larger number of parameters. The
training and validation losses for the advanced network trained
on each shape are given in Figures 4, Fig 5, and Fig 6.

As seen in the L-shape validation loss between Fig 2 and
Fig 5, the advanced network shows a more stable decrease in
validation loss. For the other two shapes, the validation loss
of the advanced network also achieves lower or equal losses.
This shows that our advanced network does not overfit to the
training data we collect, and there are indeed more complex
representations in the training data that are not captured by
the shallow MLP architecture adopted in the baseline.

Both neural networks were trained using the following loss
function to ensure predicted next states x̂ = [x̂ ŷ θ̂] were
the same as actual states x = [x y θ]:

L(x, x̂) =
n∑

i=0

|R̂pi + t̂− (Rpi + t)|2 (3)

Where
R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
t = [x y]

and pi is the i-th point of the shape in the shape’s local frame.
R̂ and t̂ are the predicted rotation matrix and translation.

D. MPPI Control for Trajectory Following

Both neural networks were integrated into an existing MPPI
controller. MPPI is a model predictive control algorithm
which is capable of planning control trajectories when given
a learned dynamics model. MPPI randomly samples control
action pertubations and adds them to a control trajectory,
rolls out the different control trajectories, and averages the
trajectories around the one giving the highest costs [9]. We
had to modify our MPPI implementation to ensure the point
parameter in our actions (specifying which point on the shape

3

Fig. 7. The simulation of the pushing task with the Franka Panda pushing
the U shape (blue) to the target position (green).

Fig. 8. The simulation of the obstacle avoidance task with the Franka Panda
pushing the block M shape (blue) to the target position (green) while avoiding
the grey obstacle.

to push at) was an integer, as MPPI’s weighted averaging
caused it to be a decimal. Additionally, we noticed that the
points had to be numbered going clockwise around the shape’s
perimeter. This is because MPPI assumes that similar control
actions lead to similar results. If two points close by lead to the
same pushing outcome and cost, MPPI averages out the point
indices, but if the indices are different then the final averaged
index will be different from either of the points and may be an
index for a point at which it is difficult to push the block. By
numbering the points clockwise around the shape’s perimeters,
points close by that had a similar pushing outcome had similar
indices, meaning when the indices are averaged in MPPI, and
index which is close to those ’good’ pushing indices is chosen.

The MPPI controller with our learned dynamics model was
used to complete three tasks for each shape: pushing the shape
forward; pushing the shape to the side and rotating it; and
pushing the shape around one obstacle. A demonstration of
the U-shape being pushed around one obstacle is shown in
Fig. 7. Each task was run five times for each shape and the
average number of steps needed to successfully execute the
tasks is given in Tables I, II, III. A successful outcome is

TABLE I
STEPS TAKEN TO COMPLETE THE OBJECT PUSHING TASK USING MPPI
WITH THE BASELINE AND POINT CLOUD LEARNED DYNAMICS MODELS

Shape Steps taken to complete pushing task
Baseline Point Cloud

U shape 3 3
L shape 8.20 5.80
Block M 9.20 7

TABLE II
STEPS TAKEN TO COMPLETE THE OBJECT ROTATING TASK USING MPPI
WITH THE BASELINE AND POINT CLOUD LEARNED DYNAMICS MODELS

Shape Steps taken to complete rotating task
Baseline Point Cloud

U shape 18 14.60
L shape 17 16.20
Block M 17.40 18

defined as when the distance to the final object pose is within
a tolerance of 0.05 m.

From the results, we can see that the point cloud method
executes the tasks in fewer steps on average. This proves our
prior hypothesis that a deeper and wider network with more
parameters can better capture the complex latent relationship
between object geometry and the action.

We observe that our methods will occasionally fail, primar-
ily due to overshooting in certain actions, which causes the
objects to slide out of the reach of the robotic arm. In addition,
we suspect that the wide range of possible actions makes MPPI
hard, since MPPI works well when actions are similar due to
the averaging of costs step. However, in our case, the pushing
actions are diverse, as we can push the shape in any direction
from its current state. This increases the range of actions and
makes it harder to find an optimal trajectory from the possible
trajectories. As next steps, we plan to train the model with an
expanded training dataset of more diverse shapes and actions
for more epochs, incorporate richer geometric features into the
input, and add uncertainty modeling to guide MPPI planning.

REFERENCES

[1] Ying Zheng et al. “A Survey of Embodied Learning for
Object-Centric Robotic Manipulation”. In: arXiv preprint
arXiv:2408.11537 (2024).

[2] Davis Rempe et al. Learning Generalizable Physical
Dynamics of 3D Rigid Objects. 2019. arXiv: 1901.00466
[cs.CV]. URL: https://arxiv.org/abs/1901.00466.

TABLE III
STEPS TAKEN TO COMPLETE THE OBJECT PUSHING AMID OBSTACLES
TASK USING MPPI WITH THE BASELINE AND POINT CLOUD LEARNED

DYNAMICS MODELS

Shape Steps taken to complete obstacle avoidance task
Baseline Point Cloud

U shape 41 35
L shape 47.40 32
Block M 41.40 37.60

4

[3] Mwamba Kasongo Dahouda and Inwhee Joe. “A Deep-
Learned Embedding Technique for Categorical Features
Encoding”. In: IEEE Access 9 (2021), pp. 114381–
114391. DOI: 10.1109/ACCESS.2021.3104357.

[4] Mona Alzahrani et al. “Deep models for multi-view 3D
object recognition: a review”. In: Artificial Intelligence
Review 57.12 (Oct. 2024). ISSN: 1573-7462. DOI: 10 .
1007/s10462-024-10941-w. URL: http://dx.doi.org/10.
1007/s10462-024-10941-w.

[5] Charles R Qi et al. “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation”. In: arXiv
preprint arXiv:1612.00593 (2016).

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. “ImageNet Classification with Deep Convolutional
Neural Networks”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by F. Pereira et al.
Vol. 25. Curran Associates, Inc., 2012. URL: https : / /
proceedings . neurips . cc / paper files / paper / 2012 / file /
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[7] Hyunjae Kim et al. “Exploring the spatial reasoning
ability of neural models in human IQ tests”. In: Neural
Networks 140 (Aug. 2021), pp. 27–38. ISSN: 0893-6080.
DOI: 10.1016/j.neunet.2021.02.018. URL: http://dx.doi.
org/10.1016/j.neunet.2021.02.018.

[8] Erwin Coumans and Yunfei Bai. PyBullet, a Python
module for physics simulation for games, robotics and
machine learning. http://pybullet.org. 2016–2021.

[9] Grady Williams et al. “Aggressive driving with model
predictive path integral control”. In: 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
2016, pp. 1433–1440. DOI: 10 . 1109 / ICRA . 2016 .
7487277.

5

